If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+20k+9=-3
We move all terms to the left:
3k^2+20k+9-(-3)=0
We add all the numbers together, and all the variables
3k^2+20k+12=0
a = 3; b = 20; c = +12;
Δ = b2-4ac
Δ = 202-4·3·12
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16}{2*3}=\frac{-36}{6} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16}{2*3}=\frac{-4}{6} =-2/3 $
| 10=2d-5 | | 4k^2+10=-66 | | 1,890=42(p+15 | | -1/5x+7=2/3x-4 | | 8x-38=-86 | | 7n-3n-n=15 | | 2/5h=2 | | 3n−1=11 | | (9w-5)=58 | | 87-3x=54 | | 9q-6q-2q+3q=12 | | 94=3+7z | | 57=20-x | | 16a=360 | | -7w+5(w+4)=28 | | Y=2/3x+2/3 | | -0.75x+18=-0.50x+12 | | 4,165=35(p+30) | | 8=4+2vv= | | x;x-62=84 | | (5)(10)=(x)(25) | | 4-2t=4−2 | | 5x40.x=8 | | 5(x-2)+7=-18 | | 100-q=P | | 6k+2k+k=18 | | 5=-2x-15 | | 14/x=25/100 | | 8-5y=-22 | | 8=2v+4v= | | 2-4r=-6 | | 2×y=12 |